{"m1":["resume_head","resume_name"],"m2":[],"m3":["resume_base_info","resume_job","resume_edu","resume_skill","resume_work","resume_internship","resume_honor","resume_project","resume_portfolio","resume_school_info","resume_hobby","resume_summary"],"m4":[]}
.resume_main[data_color] .skill_item .skill_slider span::before{background-color:${color};}
.resume_main[data_color] .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s {border-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="average"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="average"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 #ccc, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="good"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="good"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="advanced"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="advanced"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="expert"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="expert"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 ${relative_skill_color}, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="average"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 #ccc,63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="good"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="advanced"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="expert"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 ${relative_skill_color},81px 0 0 #ccc;}
.resume_main[data_color] .hobby_item .hobby_item_con .hobby_item_list a.alifont{border-color:${relative_hobby_color};color:${relative_hobby_color}; }
/* ?????? */
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-fill="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_avatar{border-color: ${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="07"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="08"] .resume_cover_content::after{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="10"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="11"] .resume_cover_content{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="14"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="15"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="19"] .resume_cover_word::before{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="20"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="06"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="12"]{background-color:${color}}
.resume_main[data_color] .resume_m3 .resume_item dt span.resume_item_title_span{color:${color}; border-color:${color};}
["sex","age","nation","education","marriageStatus","politicalStatus","city","jobYear","mobile","email"]
-
?
基本信息
-
-
?
姓名
-
錘子簡歷
夢想每個人都有,但不是每個人都有勇氣去堅信,我有!
-
教育背景
-
2014.09 - 2018.06
錘子簡歷大學
計算機與信息技術
GPA:3.72/4(專業(yè)前10%) GRE:324
-
工作經(jīng)驗
-
2019年12月 - 至今
錘子簡歷信息有限公司
圖像識別開發(fā)工程師
- 基礎的圖像卷積模塊優(yōu)化,通用于圖像預處理;對比患者的影像圖片,進行圖像匹配。
- 對于腫瘤圖形的對比匹配圖像分割的相關算法的研究。
- 定位目標區(qū)域的動態(tài)輪廓匹配算法研究,對圖像清晰度進行研究,工業(yè)檢測AO,使用halcon檢測車載顯示屏缺陷。
- 對公司整體模型調(diào)參算法開發(fā),用Python編寫項目中需要的功能性模塊。
- 根據(jù)采集到的數(shù)據(jù)挑選最優(yōu)的數(shù)學模型初步進行擬合操作繪制圖像。
- 用Opencv對圖像進行數(shù)據(jù)預處理(如圖像裁剪,降噪,數(shù)據(jù)增強等),運用matplotib繪制分析參數(shù)的曲線,優(yōu)化模型,選擇最優(yōu)參數(shù)。
2018年3月 - 2019年12月
錘子簡歷科技有限公司
圖像識別開發(fā)工程師
- 在Ubuntu上搭建ROS操作系統(tǒng),并搭建MOOE導航系統(tǒng);
- 開發(fā)基于激光雷達的SLAM導航、路徑規(guī)劃、運動控制、智能交管系統(tǒng)等算法,并維護及優(yōu)化;
- 利用圖像識別開發(fā)機器人底盤自主充電程序、小車識別棧板并運動頂起棧板程序;
- 編寫shell腳本對Linux系統(tǒng)及程序進行管理控制;
- 負責圖像識別開發(fā)工作,參與物體檢測神經(jīng)網(wǎng)絡搭建及調(diào)測;
-
項目經(jīng)驗
-
2021年3月 - 2021年11月
項目工程
圖像識別開發(fā)工程師
- 將兩張同源的超聲圖像通過圖像特征點進行匹配。
- 使用harrislaplace進行金字塔式尋找角點。
- 使用兩個卷積,x和y方向的二維高斯一介導數(shù),即達到降噪和尋找梯度的作用。
- 求局部最大值,即特征點,對相同位置的金字塔中的特征點,使用laplace局部最大值,即特征點所描述的范圍。使用SIFT描述子來描述特征點的特征。
- 在harris中求得的方向,在該方向上取laplace描述的范圍的矩形窗口。
- 將窗口分為4*4的小窗口,每個窗口分為8個方向求HOG,得到128維的特征向量,使用Hungarian方法進行bipartitematch進行兩兩匹配,使用RANSAC篩選處于同個仿射變換的匹配。
-
自我評價
-
本人對待工作踏實,認真,并且極富工作和團隊精神,因此在工作和生活中結交了許多朋友,具有良好的適應性和熟練的溝通技巧,相信能夠協(xié)助主管人員出色地完成各項工作。綜合素質(zhì)佳,能夠吃苦耐勞,忠誠穩(wěn)重堅守誠信正直原則,感謝您在百忙之中閱覽我的簡歷,靜候佳音!
-
作品展示
-
+(支持jpg/png格式,單張圖片不超過2M,最多支持添加8張圖片)