{"m1":[],"m2":[],"m3":["resume_head","resume_name","resume_base_info","resume_job","resume_edu","resume_skill","resume_work","resume_internship","resume_honor","resume_project","resume_portfolio","resume_school_info","resume_hobby","resume_summary"],"m4":[]}
.resume_main[data_color] .skill_item .skill_slider span::before{background-color:${color};}
.resume_main[data_color] .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s {border-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="average"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="average"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 #ccc, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="good"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="good"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="advanced"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="advanced"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="expert"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="expert"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 ${relative_skill_color}, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="average"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 #ccc,63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="good"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="advanced"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="expert"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 ${relative_skill_color},81px 0 0 #ccc;}
.resume_main[data_color] .hobby_item .hobby_item_con .hobby_item_list a.alifont{border-color:${relative_hobby_color};color:${relative_hobby_color}; }
/* ?????? */
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-fill="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_avatar{border-color: ${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="07"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="08"] .resume_cover_content::after{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="10"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="11"] .resume_cover_content{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="14"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="15"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="19"] .resume_cover_word::before{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="20"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="06"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="12"]{background-color:${color}}
.resume_main[data_color] .default_html svg path,.resume_main[data_color] .resume_item dt .default_item_html svg path{fill:${color};}
.resume_main[data_color] .resume_item dt span.resume_item_title_span{background-color:${color};}
["sex","age","nation","education","marriageStatus","politicalStatus","city","jobYear","mobile","email"]
-
?
基本信息
-
-
?
姓名
-
錘子簡歷
夢想每個(gè)人都有,但不是每個(gè)人都有勇氣去堅(jiān)信,我有!
-
教育背景
-
2014.09 - 2018.06
錘子簡歷大學(xué)
計(jì)算機(jī)與信息技術(shù)
GPA:3.72/4(專業(yè)前10%) GRE:324
-
工作經(jīng)驗(yàn)
-
2018年3月 - 至今
錘子簡歷信息有限公司
深度學(xué)習(xí)
- 從檢測框的數(shù)據(jù)標(biāo)注,數(shù)據(jù)增強(qiáng)、模型訓(xùn)練,再到部署推理端,對機(jī)器進(jìn)行深度訓(xùn)練,提高系統(tǒng)部署效率38%,增提
用戶使用體驗(yàn)、模型訓(xùn)練精度持續(xù)提升19%,移動端側(cè)推理性能(推理時(shí)延、準(zhǔn)確性)的極致提速23%
- 負(fù)責(zé)平臺級的檢測算法庫的構(gòu)建,在精度,訓(xùn)練速度多方面方面均領(lǐng)先業(yè)界水平,負(fù)責(zé)調(diào)研業(yè)界最新的各種trips來提
升模型精度和訓(xùn)練性能,總體機(jī)器學(xué)習(xí)覆蓋面達(dá)到90%
- 利用現(xiàn)有的多種目標(biāo)檢測和OCR模型進(jìn)行重新訓(xùn)練和測試實(shí)驗(yàn),為機(jī)器學(xué)習(xí)增添3個(gè)學(xué)習(xí)方案并落實(shí),提高深度學(xué)習(xí)
效率39%,對比提高精準(zhǔn)度和速度約一倍。
-
實(shí)習(xí)經(jīng)驗(yàn)
-
-
項(xiàng)目經(jīng)驗(yàn)
-
2021年3月 - 2021年11月
項(xiàng)目工程
深度學(xué)習(xí)
- 在知識庫上構(gòu)建了富含實(shí)體、關(guān)系、概念的知識圖譜,為深度學(xué)習(xí)提供30項(xiàng)數(shù)據(jù)支持,建立了知識質(zhì)量控制體系和檢
索體系,在病歷結(jié)構(gòu)化產(chǎn)品中應(yīng)用了基于正則表達(dá)式、基于統(tǒng)計(jì)、基于模型的實(shí)體識別,提高病例識別率30%
- 在肺炎、胃病理、骨齡、眼底病變等5個(gè)產(chǎn)品中應(yīng)用了7鐘物體檢測框架和圖像識別編碼器,在體檢報(bào)告和處方產(chǎn)品
中,探索了基于深度學(xué)習(xí)的多模態(tài)模型和文本生成模型工7個(gè),在涉及訓(xùn)練激據(jù)生成的場景,提出了對抗學(xué)習(xí)的文本
判別方法,創(chuàng)新方法提高文本判定精準(zhǔn)度39%。
-
自我評價(jià)
-
- 熟悉Tensorflow、pytorch等開源框架
- 熟悉常見深度學(xué)習(xí)算法模型,如VGG、ResNet、FasterRcnn、Yolo系列、U-nct等
- 熟悉常見機(jī)器學(xué)習(xí)算法:如K-menas、LR、SVM、GBDT、XGBOOST等
- 熟練掌握Python,使用numpy、pandas等科學(xué)計(jì)算庫及Opencv、PIL等圖像處理庫,精通arcgis和envi
- 本人對待工作踏實(shí),認(rèn)真,并且極富工作和團(tuán)隊(duì)精神,因此在工作和生活中結(jié)交了許多朋友,具有良好的適應(yīng)性和熟練的溝通技巧,相信能夠協(xié)助主管人員出色地完成各項(xiàng)工作。綜合素質(zhì)佳,能夠吃苦耐勞,忠誠穩(wěn)重堅(jiān)守誠信正直原則,感謝您在百忙之中閱覽我的簡歷,靜候佳音!
-
作品展示
-
+(支持jpg/png格式,單張圖片不超過2M,最多支持添加8張圖片)