{"m1":[],"m2":[],"m3":["resume_head","resume_name","resume_base_info","resume_job","resume_edu","resume_work","resume_hobby","resume_skill","resume_summary","resume_internship","resume_honor","resume_project","resume_portfolio","afe82920-b731-484f-ad09-b1f13e729011","c6f4d2f2-2442-495a-adad-0704996eff70"],"m4":[]}
.resume_main[data_color] .skill_item .skill_slider span::before{background-color:${color};}
.resume_main[data_color] .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s {border-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="average"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="average"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 #ccc, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="good"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="good"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="advanced"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="advanced"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="expert"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="expert"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 ${relative_skill_color}, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="average"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 #ccc,63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="good"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="advanced"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="expert"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 ${relative_skill_color},81px 0 0 #ccc;}
.resume_main[data_color] .hobby_item .hobby_item_con .hobby_item_list a.alifont{border-color:${relative_hobby_color};color:${relative_hobby_color}; }
/* ?????? */
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-fill="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_avatar{border-color: ${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="07"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="08"] .resume_cover_content::after{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="10"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="11"] .resume_cover_content{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="14"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="15"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="19"] .resume_cover_word::before{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="20"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="06"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="12"]{background-color:${color}}
.resume_main[data_color] .name_item .name-con .name{color:${color};}
.resume_main[data_color] .resume_item dl dt span.resume_item_title_span{background-color:${color};}
-
?
姓名
-
錘子簡歷
萬眾狂歡時懂得沉默,一片寂靜時挺身而出。
-
教育背景
-
2009.09-2013.06
錘子簡歷大學(xué)
軟件工程
-
工作經(jīng)驗
-
2018.06-2019.01
錘子簡歷公司
推薦算法專家
- 負責電商、視頻、咨詢場景下推薦算法研發(fā),根據(jù)用戶行為的分析和挖掘,構(gòu)建用戶畫像、標簽系統(tǒng)等;
- 負責個性化推薦、個性推送算法設(shè)計和優(yōu)化,完成推薦后臺相關(guān)功能開發(fā);
- 負責算法的應(yīng)用與調(diào)優(yōu),提升推薦效果,有扎實的專業(yè)技術(shù)知識;
- 負責推薦系統(tǒng)架構(gòu)研發(fā),推薦算法項目管理及規(guī)劃,分配相關(guān)工作給下屬;
- 主動學(xué)習(xí)新的技能,定期參加培訓(xùn)大會,提升自己的專業(yè)素養(yǎng);
2015.04-2018.06
錘子簡歷公司
推薦算法專家
- 負責利用機器學(xué)習(xí)技術(shù),改進推薦系統(tǒng)中排序建模、關(guān)聯(lián)挖掘、文本分析、內(nèi)容質(zhì)量等方面,優(yōu)化用戶的視頻觀看體驗;
- 負責建模用戶對知識點的掌握程度推薦復(fù)習(xí)題目,高效率完成每日工作任務(wù);
- 負責分析數(shù)據(jù),挖掘用戶興趣,增強推薦系統(tǒng)的預(yù)測能力;
- 負責完善 abtest 等工具系統(tǒng),跟蹤用戶的觀看時長,學(xué)習(xí)情況等指標,分析相關(guān)數(shù)據(jù);
- 負責分析線上線下數(shù)據(jù),不斷優(yōu)化模型并提高推薦效果,為用戶帶來最好的產(chǎn)品體驗;
-
作品展示
-
+(支持jpg/png格式,單張圖片不超過2M,最多支持添加8張圖片)
-
?
其他
-
- 技能: 有扎實的機器學(xué)習(xí)功底,深刻理解數(shù)據(jù)平滑、特征選擇、Bayes、熵、優(yōu)化方法、GLM、矩陣運算等;熟悉協(xié)同過濾、矩陣分解、GBDT、LearningToRank、word2vec、CRF、LSTM等常見算法;熟悉多線程和多進程編程方式,深諳各種緩存和內(nèi)存壓縮技術(shù);熟悉Python、Go、C++/Java等語言,具備良好的編碼習(xí)慣和算法基礎(chǔ);
-
?
項目經(jīng)歷
-
2018.01-2018.03
閱值A(chǔ)pp
- 閱值是一個基于移動互聯(lián)網(wǎng)的新型商家資訊平臺,根據(jù)用戶設(shè)置的個人標簽屬性及用戶的活動軌跡,向用戶推薦用戶需要的或者感興趣的知識資訊和線下體驗活動,用戶能夠在閱值里面快速找到自己想要的服務(wù)及相關(guān)信息;
- 負責參與數(shù)據(jù)庫設(shè)計,項目進度、測試等工作進度的跟進,參與任務(wù)分配,項目計劃,工作計劃安排,根據(jù)業(yè)務(wù), 對數(shù)據(jù)進行預(yù)處理、缺失值、異常值處理,使用 spark 離線分析用戶行為數(shù)據(jù)與文章數(shù)據(jù),構(gòu)建用戶畫像和文章畫像;
- 負責使用 Flume、Kafka、Spark Streaming 進行在線召回,構(gòu)建 ALS 協(xié)同過濾模型進行離線召回,使用 word2vec 計算詞向量、通過 LSH 局部敏感哈希計算相似度,構(gòu)建 LR模型進行排序,使用 grpc 開發(fā)對接接口;