{"m1":["resume_head","resume_name","resume_base_info"],"m2":[],"m3":["resume_job","resume_edu","resume_work","resume_hobby","resume_skill","resume_honor","resume_summary","resume_internship","resume_project","resume_portfolio","cbae7459-31b4-4f7f-be21-83a67aea712c","34dd907e-4c69-4d44-94db-98b0d5831759"],"m4":[]}
.resume_main[data_color] .skill_item .skill_slider span::before{background-color:${color};}
.resume_main[data_color] .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s {border-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_01.skill_item .skill_slider s i{background-color:${relative_skill_color};}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="average"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="average"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 #ccc, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="good"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="good"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 #ccc, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="advanced"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="advanced"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 #ccc, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_04.skill_item .skill_slider[data_level="expert"] i,.resume_main[data_color] .skill_style_07.skill_item .skill_slider[data_level="expert"] i{box-shadow:24px 0 0 ${relative_skill_color}, 48px 0 0 ${relative_skill_color}, 72px 0 0 ${relative_skill_color}, 96px 0 0 ${relative_skill_color}, 120px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="average"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 #ccc,63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="good"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 #ccc,72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="advanced"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 #ccc,81px 0 0 #ccc;}
.resume_main[data_color] .skill_style_08.skill_item .skill_slider[data_level="expert"] i{box-shadow:9px 0 0 ${relative_skill_color}, 18px 0 0 ${relative_skill_color}, 27px 0 0 ${relative_skill_color}, 36px 0 0 ${relative_skill_color}, 45px 0 0 ${relative_skill_color},54px 0 0 ${relative_skill_color},63px 0 0 ${relative_skill_color},72px 0 0 ${relative_skill_color},81px 0 0 #ccc;}
.resume_main[data_color] .hobby_item .hobby_item_con .hobby_item_list a.alifont{border-color:${relative_hobby_color};color:${relative_hobby_color}; }
/* ?????? */
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover .cover_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="fill"] {fill:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-svg="stroke"] {stroke:${color};}
.resume_main[data_color] .resume_letter .letter_html svg [data-fill="fill"] {fill:${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_avatar{border-color: ${color};}
.resume_main[data_color] .resume_cover[data-type="07"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="07"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="08"] .resume_cover_content::after{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .resume_cover_content{background:${color}}
.resume_main[data_color] .resume_cover[data-type="09"] .cover_item_list a.alifont{color: ${color};}
.resume_main[data_color] .resume_cover[data-type="10"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="11"] .resume_cover_content{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="14"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="15"]{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="19"] .resume_cover_word::before{background-color:${color}}
.resume_main[data_color] .resume_cover[data-type="20"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="06"]{background-color:${color}}
.resume_main[data_color] .resume_letter[data-type="12"]{background-color:${color}}
.resume_main[data_color] .resume_item dl dt span.resume_item_title_span,.resume_main[data_color] .name_item .name-con .name{color:${color};}
.resume_main[data_color] .resume_item dl dt{border-bottom-color:${color};}
.resume_main[data_color] .resume_item dl dt span.resume_item_title_span{color:${color};}
-
?
姓名
-
錘子簡歷
世界屬于那些勤于思考的人,更屬于那些善于行動(dòng)的人。
-
教育背景
-
2011.09-2015.06
錘子簡歷大學(xué)
軟件工程
-
工作經(jīng)驗(yàn)
-
2019.01-2019.11
錘子簡歷公司
資深推薦算法工程師
- 參與汽車之家智能營銷項(xiàng)目,負(fù)責(zé)其中人工干預(yù)模塊;
- 負(fù)責(zé)實(shí)現(xiàn)智能營銷廣告投放用戶行為數(shù)據(jù)的自動(dòng)反饋,以幫助持續(xù)提升算法 CTR;
- 負(fù)責(zé)APP 用戶畫像的優(yōu)化,行為分析,為排序模型提供特征支持;
- 負(fù)責(zé)以用戶為單位,基于行為對其分群,分析頁面瀏覽情況;
- 負(fù)責(zé)以頁面為單位,基于圖論模型分析不同頁面之間的跳轉(zhuǎn)情況;
2016.01-2018.12
錘子簡歷公司
資深推薦算法工程師
- 負(fù)責(zé)推薦算法架構(gòu)的設(shè)計(jì),領(lǐng)導(dǎo)推薦算法團(tuán)隊(duì);
- 負(fù)責(zé)個(gè)性化推薦方向的策略,用戶畫像,用戶標(biāo)簽體系的建立,以及推薦系統(tǒng)的效果改進(jìn);
- 負(fù)責(zé)應(yīng)用數(shù)據(jù)挖掘,機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等技術(shù),為用戶提供推薦和排序,提升個(gè)性化推薦的效果,改進(jìn)用戶體驗(yàn);
-
實(shí)習(xí)經(jīng)驗(yàn)
-
-
自我評價(jià)
-
之前一直從事硬件方面的工作,現(xiàn)在想從事人工智能深度學(xué)習(xí)方面的工作。在最近的半年時(shí)間里,自學(xué)了python、Tensorflow、CNN/RNN、ubuntu等大數(shù)據(jù)人工智能方面的知識。我深知在換行業(yè)和職業(yè)這種折騰的過程中會遇到很多困難,但我依然走上了這條道路,因?yàn)檎垓v在抵抗麻木的過程中,會讓生活變得更有意思。希望各位HR能給個(gè)面試機(jī)會。
-
作品展示
-
+(支持jpg/png格式,單張圖片不超過2M,最多支持添加8張圖片)
-
?
其他
-
- 技能: 掌握 CNN、RNN、LSTM 等基本神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),熟練圖像識別、分類和目標(biāo)檢測,熟練深度學(xué)習(xí)圖像算法;熟悉 NLP,使用過自然語言處理方法中的文本情感分析、對話機(jī)器人、意圖分析等;了解語音識別及其 CTC 等;了解 DNN 以及 CB、 CF、 GBDT 、 TF-IDF、 LR 等推薦系統(tǒng)常用算法。 掌握Python 、Java 的基本運(yùn)用;熟練 Tensorflow,掌握 numpy、matplotlib 的基本使用;了解pytorch、Scikit-neuralnetwork、Scikit-learn、pandas 等函數(shù)包的使用;熟悉 DenseNet、ResNet、GoogleNet 等深度學(xué)習(xí)框架,掌握 Bert、attention、transformer 等新型熱門自然語言處理技術(shù),具備良好的數(shù)學(xué)基礎(chǔ)和英語閱讀能力;掌握最新人工智能框架常用的激活函數(shù):ReLU、Tanh、sigmoid 等;熟練神經(jīng)網(wǎng)絡(luò),且了解 SVM、KNN、決策樹、隨機(jī)森林、邏輯回歸、Nave Bayes、EM、k-means、Adaboost 等傳統(tǒng)機(jī)器學(xué)習(xí)算法以及常見數(shù)據(jù)分析方法;了解Q-learning、 Sarsa、 DQN、 Double DQN、 Policy Gradient、Actor Critic(DDPG、A3C、DDPO)等算法;了解分布式集群 HDFS、 MapReduce 及其生態(tài)圈組件(Hbase、 Hive 等)、Shell、ELK、微服務(wù)、SaaS 應(yīng)用等;
- 興趣愛好: 喜歡跑步,堅(jiān)持每天晨跑一小時(shí);
-
?
項(xiàng)目經(jīng)歷
-
2018.01-2018.03
寵樂園推薦系統(tǒng)
- 寵樂園是一款愛寵人群綜合類社交平臺,它包括:主題發(fā)布、趣味互動(dòng)、社交圈粉、新型探索、萌系可愛等板塊,該軟件致力于給用戶帶來更好的用戶使用體驗(yàn),主要包括創(chuàng)建ALS 模型,召回商品,神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn) CTR 預(yù)估,離線數(shù)據(jù)處理,實(shí)時(shí)推薦等等;
- 使用 flume 收集用戶日志,將用戶行為采集到 HDFS,使用用戶基本信息訓(xùn)練 K-Means聚類,解決用戶冷啟動(dòng)問題,Spark streaming 實(shí)時(shí)處理 kafka 發(fā)送過來的點(diǎn)擊日志,實(shí)時(shí)更新特征,實(shí)時(shí)更新召回集,使用 tfidf、textrank 提取物品關(guān)鍵詞、主題詞,使用 word2vec處理文本內(nèi)容,構(gòu)建物品畫像;
- 使用用戶基本信息和用戶的行為信息對用戶標(biāo)簽化即構(gòu)建用戶畫像,標(biāo)簽權(quán)重隨時(shí)間指數(shù)衰減;解析用戶行為日志,實(shí)時(shí)增加物品的點(diǎn)擊次數(shù)等信息,將熱門物品存入到 kafka中,查詢 redis 中是否也有也存在此熱門物品;